一句话题意,给定 \(n\) , \(m\) ,求 (\(1\),\(2\)) 到 (\(n-1\),\(m\)) 和 (\(2\),\(1\)) 到 (\(n\),\(m-1\)) 的不相交路径方案数。

考虑使用 \(LGV\) 引理解题。
(虽然可以自己推)。

\(LGV\) 引理的定义(来自 \(OI-wiki\))为

\(\omega(P)\) 表示一条路径上的边权之积(统计路径个数时可以全部赋为1)

\(e(A,B)\) 表示从 \(A\)\(B\) 的所有路径的 \(\omega(P)\) 之和。

\(N(\sigma(S))\) 表示排列 \(\sigma(S)\) 的逆序对数量

\(M= \begin{bmatrix}e(A_1,B_1)&e(A_1,B_2)&\cdots&e(A_1,B_n)\\e(A_2,B_1)&e(A_2,B_2)&\cdots&e(A_2,B_n)\\ \vdots&\vdots&\ddots&\vdots\\ e(A_n,B_1)&e(A_n,B_2)&\cdots&e(A_n,B_n)\end{bmatrix}\)

\(\det(M)=\sum\limits_{S:A\rightarrow B}(-1)^{N(\sigma(S))}\prod\limits_{i=1}^n\omega(S_i)\)

知道了这些,我们就可以来做这道题了(

根据 \(LGV\) 引理可得,本题答案为
\(e((1,2),(n-1,m))\) \(\times\) \(e((2,1),(n,m-1)-e((1,2),(n,m-1))\) \(\times\) \(e((2,1),(n-1,m))\)

#include<bits/stdc++.h>
#define RG register
#define LL long long
#define U(x, y, z) for(RG int x = y; x <= z; ++x)
#define D(x, y, z) for(RG int x = y; x >= z; --x)
using namespace std;
template <typename T> void read(T &n){ bool f = 1; char ch = getchar(); n = 0; for (; !isdigit(ch); ch = getchar()) if (ch == '-') f = 0; for (; isdigit(ch); ch = getchar()) n = (n << 1) + (n << 3) + (ch ^ 48); if (f == 0) n = -n;}
inline char Getchar(){ char ch; for (ch = getchar(); !isalpha(ch); ch = getchar()); return ch;}
template <typename T> inline void write(T n){ char ch[60]; bool f = 1; int cnt = 0; if (n < 0) f = 0, n = -n; do{ch[++cnt] = char(n % 10 + 48); n /= 10; }while(n); if (f == 0) putchar('-'); for (; cnt; cnt--) putchar(ch[cnt]);}
template <typename T> inline void writeln(T n){write(n); putchar('\n');}
template <typename T> inline void writesp(T n){write(n); putchar(' ');}
template <typename T> inline void chkmin(T &x, T y){x = x < y ? x : y;}
template <typename T> inline void chkmax(T &x, T y){x = x > y ? x : y;}
template <typename T> inline T Min(T x, T y){return x < y ? x : y;}
template <typename T> inline T Max(T x, T y){return x > y ? x : y;}
inline void readstr(string &s) { s = ""; static char c = getchar(); while (isspace(c)) c = getchar(); while (!isspace(c)) s = s + c, c = getchar();}
inline void FO(string s){freopen((s + ".in").c_str(), "r", stdin); freopen((s + ".out").c_str(), "w", stdout);}

const int N = 3010;
int n, m;
int f[N][N];
char ch[N][N];
bool a[N][N];

const int mod = 1e9 + 7;
inline void DP() {
	U(i, 1, n) U(j, 1, m) if (a[i][j]) (f[i][j] += (f[i][j - 1] + f[i - 1][j])) %= mod; else f[i][j] = 0;
		// cerr << i << " " << j << " " << f[i][j] << "\n";
}

int main(){
	//FO("");
	read(n), read(m);
	U(i, 1, n) {
		scanf("%s", ch[i] + 1);
		U(j, 1, m) if (ch[i][j] == '#') a[i][j] = 0; else a[i][j] = 1; 
	}

	f[1][2] = 1;
	DP();
	LL res1 = f[n - 1][m], res2 = f[n][m - 1];
	memset(f, 0, sizeof f);
	f[2][1] = 1;
	DP();
	res1 = res1 * f[n][m - 1] % mod, res2 = res2 * f[n - 1][m] % mod;
	// cerr << f[n][m - 1] << " " << res2 << "\n";
	writeln((res1 - res2 + mod) % mod);
	return 0;
}

原文地址:http://www.cnblogs.com/SouthernWay/p/16829348.html

1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长! 2. 分享目的仅供大家学习和交流,请务用于商业用途! 3. 如果你也有好源码或者教程,可以到用户中心发布,分享有积分奖励和额外收入! 4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解! 5. 如有链接无法下载、失效或广告,请联系管理员处理! 6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需! 7. 如遇到加密压缩包,默认解压密码为"gltf",如遇到无法解压的请联系管理员! 8. 因为资源和程序源码均为可复制品,所以不支持任何理由的退款兑现,请斟酌后支付下载 声明:如果标题没有注明"已测试"或者"测试可用"等字样的资源源码均未经过站长测试.特别注意没有标注的源码不保证任何可用性